Reconsideration of the Effectiveness on Extracting Computer Diagnostic Rules by Automatically Defined Groups
نویسندگان
چکیده
Our aim is to manage computer systems without expert knowledge. We have proposed a method of diagnostic rule extraction from log files by using Automatically Defined Groups (ADG) based on Genetic Programming. However, this work less explained the effectiveness, especially, the characteristics of the acquired rules. Therefore, we re-evaluated the effectiveness by performing two experiments: the use of artificial log files and the use of real log files. As a result, we confirmed that ADG could acquire the rules composed of multiple terms. This characteristic is very important because we can judge the message that we must consider the co-occurrence of the words, i.e. ‘Error’ and ‘not’. Thus, we conclude that the ADG is effective for the diagnosis of the systems.
منابع مشابه
Discovering Multiple Diagnostic Rules from Coronary Heart Disease Database using Automatically Defined Groups
Much of the research on extracting rules from a large amount of data has focused on the extraction of a general rule that covers as many data as possible. In the field of health care, where people’s lives are at stake, it is necessary to diagnose appropriately without overlooking the small number of patients who show different symptoms. Thus, the exceptional rules for rare cases are also import...
متن کاملExtraction of Rules from Coronary Heart Disease Database Using Automatically Defined Groups
Much of the research on extracting rules from a large amount of data has focused on the extraction of a general rule that satisfies as many data as possible. In the field of health care where people’s lives are at stake, the exceptional rules for rare cases are also important. In this paper, we describe the knowledge acquisition from data containing such multiple rules. We consider that a multi...
متن کاملA Rule Extractor for Diagnosing the Type 2 Diabetes Using a Self-organizing Genetic Algorithm
Introduction: Constructing medical decision support models to automatically extract knowledge from data helps physicians in early diagnosis of disease. Interpretability of the inferential rules of these models is a key indicator in determining their performance in order to understand how they make decisions, and increase the reliability of their output. Methods: In this study, an automated hyb...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007